Detailed field pattern is intrinsic to the embryonic mouse hippocampus early in neurogenesis.
نویسندگان
چکیده
There is accumulating evidence that the mammalian cerebral cortex is regionally specified early in neurogenesis. However, the degree and scale of the regional pattern that is intrinsic to different parts of the cortical primordium remains unclear. Here, we show that detailed patterning-the accurate positioning of several areas or fields-is intrinsic to the part of the primordium that generates the hippocampus. A caudomedial portion of the cortical primordium, the site from which the hippocampus arises, was isolated from potential extrinsic patterning cues by maintaining it in explant culture. Explants were prepared at embryonic day (E) 12.5, which is early in hippocampal neurogenesis in the mouse and 3 d before individual fields are seen by differential gene expression. Allowed to develop for 3 d in vitro, E12.5 explants upregulate field-specific patterns of gene expression with striking temporal and spatial accuracy. Possible sources of patterning signals intrinsic to the explants were evaluated by removing the cortical hem or presumptive extrahippocampal cortex from the explants. To expose cells to different local positional cues, explant fragments were grafted into ectopic positions in a larger explant. None of these manipulations altered the development of patterned, field-specific gene expression. Finally, explants harvested at E10.5 also upregulate field-specific gene expression, although less robustly. Some hippocampal patterning information is therefore intrinsic to the caudomedial cortical primordium at the time that the first hippocampal neurons are born at E10.5. By E12.5, hippocampal field patterning appears to be well established and resistant to the manipulation of several potential intrinsic cues.
منابع مشابه
P 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis
Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...
متن کاملNovel genes differentially expressed in cortical regions during late neurogenesis.
Differential gene expression across the embryonic cerebral cortex is assumed to play a role in the subdivision of the cortex into distinct areas with specific morphology, physiology and function. In a search for genes that may be involved in the cortical regionalization during late neurogenesis in mouse, we performed an extensive in-situ expression analysis at embryonic day (E)16 and E18. The e...
متن کاملNeurogenesis in the embryonic and adult brain: same regulators, different roles
Neurogenesis persists in adult mammals in specific brain areas, known as neurogenic niches. Adult neurogenesis is highly dynamic and is modulated by multiple physiological stimuli and pathological states. There is a strong interest in understanding how this process is regulated, particularly since active neuronal production has been demonstrated in both the hippocampus and the subventricular zo...
متن کاملDistribution of Specific Glycoconjugates in Early Mouse Embryonic Notochord and Paraxial Mesenchyme
It is well known that glycoconjugate components of the cell surface and extracellular matrix, play an essential role(s) in many developmental phenomena such as cell differentiation, migration, and cellular interactions. The purpose of this study was to investigate distribution of this macromolecules during differentiation of the notochord and paraxial mesoderm. Formalin fixed paraffin sections ...
متن کاملP111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models
The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2001